Modeling Deep Learning Neural Networks With Denotational Mathematics in UbiHealth Environment

Author:

Sarivougioukas John1,Vagelatos Aristides2ORCID

Affiliation:

1. General Hospital of Athens “G. Gennimatas”, Athens, Greece

2. CTI&P, Greece

Abstract

Ubiquitous computing environments that are involved in healthcare applications are typically characterized by dynamically changing contexts. The contextual information must be efficiently processed in order to support medical decision making. The ubiquitous computing healthcare ecosystem must be capable of extracting medically valuable characteristics, making precise decisions, and taking medically appropriate actions. In this framework, deep learning networks can be used for data fusion of large and complex sets of information in order to make the appropriate medical diagnoses. The quality of decisions depends on the selection of appropriate network weights, which define a transformation of the given input into a diagnosis. Denotational mathematics provide a promising framework for modeling deep learning networks and adjusting their behavior by adapting their weights for the given input. Furthermore, the fidelity of the network's output can be controlled by applying a regulator to the weights values. The authors show that Denotational Mathematics can serve as a rigorous framework for modeling and controlling deep learning networks, thereby enhancing the quality of medical decision making.

Publisher

IGI Global

Subject

Pharmacology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3