QSAR Modeling of CCK2 Receptor Antagonists Utilizing Computed Structural Indices

Author:

Nandi Sisir1,Saxena Mridula2,Saxena Anil Kumar3

Affiliation:

1. Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur, India

2. Department of Chemistry, Amity University, Lucknow, India

3. Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, India

Abstract

In the present case study, a QSAR model has been developed to identify CCK2 receptor antagonists. The earlier reported 3D pharmacophore modeling of these molecules involved commercial software. Since the reduction in the cost involved in the drug discovery phase is very crucial, in the present study, QSAR models based on the structural indices including 1D, 2D and 3D indices computed from the structures of CCK2 receptor antagonists has been developed utilizing NanoBRIDGES software which is openly accessible (http://nanobridges.eu/software/). This QSAR model is not only comparable to the earlier reported model, but it also reasonably predicts the external set of nine compounds including the drug benzotript and the most active 6a described in earlier work on structure-based homology model CCK2 receptor antagonists as antiulcer agents and thus may be useful in virtual screening for the identification of new CCK2 receptor antagonists.

Publisher

IGI Global

Subject

Geriatrics and Gerontology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CCK2R antagonists: from SAR to clinical trials;Drug Discovery Today;2020-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3