Automatic Detection of Arrow Annotation Overlays in Biomedical Images

Author:

Cheng Beibei1,Stanley R. Joe1,De Soumya1,Antani Sameer2,Thoma George R.2

Affiliation:

1. Missouri University of Science and Technology, USA

2. U. S. National Library of Medicine, USA

Abstract

Images in biomedical articles are often referenced for clinical decision support, educational purposes, and medical research. Authors-marked annotations such as text labels and symbols overlaid on these images are used to highlight regions of interest which are then referenced in the caption text or figure citations in the articles. Detecting and recognizing such symbols is valuable for improving biomedical information retrieval. In this research, image processing and computational intelligence methods are integrated for object segmentation and discrimination and applied to the problem of detecting arrows on these images. Evolving Artificial Neural Networks (EANNs) and Evolving Artificial Neural Network Ensembles (EANNEs) computational intelligence-based algorithms are developed to recognize overlays, specifically arrows, in medical images. For these discrimination techniques, EANNs use particle swarm optimization and genetic algorithm for artificial neural network (ANN) training, and EANNEs utilize the number of ANNs generated in an ensemble and negative correlation learning for neural network training based on averaging and Linear Vector Quantization (LVQ) winner-take-all approaches. Experiments performed on medical images from the imageCLEFmed’08 data set, yielded area under the receiver operating characteristic curve and precision/recall results as high as 0.988 and 0.928/0.973, respectively, using the EANNEs method with the winner-take-all approach.

Publisher

IGI Global

Subject

Information Systems and Management,Information Systems,Medicine (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3