An Empirical Analysis of Web Navigation Prediction Techniques

Author:

Jindal Honey1,Sardana Neetu1

Affiliation:

1. Computer Science and Engineering, Jaypee Institute of Information Technology, Noida, India

Abstract

With the advancement of Information Technology, web is growing rapidly and it has became necessary part of our daily lives. It is mandate to study the navigation behavior of the user to improve the quality of web site design for personalization and further recommendation. Analysis of web navigation behavior heavily relies on navigational models. This paper is an effort to give insights of current state-of-the-art techniques used for web navigation prediction. These navigation models are broadly classified into three categories: sequential mining, classification and clustering. Analytical analysis is performed on all the categories used in web navigation prediction. Further empirical analysis is performed on popular techniques of each category Markov Model (sequential mining), Support vector machine (classification) and K-means (clustering) on the common platform to measure the effectiveness of these techniques.

Publisher

IGI Global

Subject

Information Systems and Management,Strategy and Management,Computer Science Applications,Information Systems

Reference52 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3