Improving Classification Accuracy on Imbalanced Data by Ensembling Technique

Author:

Agrawal Divya1,Bonde Padma1

Affiliation:

1. Shri Shankaracharya College of Engineering and Technology, Bhilai, India

Abstract

Prediction using classification techniques is one of the fundamental feature widely applied in various fields. Classification accuracy is still a great challenge due to data imbalance problem. The increased volume of data is also posing a challenge for data handling and prediction, particularly when technology is used as the interface between customers and the company. As the data imbalance increases it directly affects the classification accuracy of the entire system. AUC (area under the curve) and lift proved to be good evaluation metrics. Classification techniques help to improve classification accuracy, but in case of imbalanced dataset classification accuracy does not predict well and other techniques, such as oversampling needs to be resorted. Paper presented Voting based ensembling technique to improve classification accuracy in case of imbalanced data. The voting based ensemble is based on taking the votes on the best class obtained by the three classification techniques, namely, Logistics Regression, Classification Trees and Discriminant Analysis. The observed result revealed improvement in classification accuracy by using voting ensembling technique.

Publisher

IGI Global

Subject

Information Systems and Management,Strategy and Management,Computer Science Applications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Developing and Implementing Machine Learning Software at Home Depot;Journal of Cases on Information Technology;2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3