A Reinforcement Learning Integrating Distributed Caches for Contextual Road Navigation

Author:

Ilié Jean-Michel1,Chaouche Ahmed-Chawki2ORCID,Pêcheux François1ORCID

Affiliation:

1. Sorbonne University, France

2. University of Constantine 2, Algeria

Abstract

Due to contextual traffic conditions, the computation of optimized or shortest paths is a very complex problem for both drivers and autonomous vehicles. This paper introduces a reinforcement learning mechanism that is able to efficiently evaluate path durations based on an abstraction of the available traffic information. The authors demonstrate that a cache data structure allows a permanent access to the results whereas a lazy politics taking new data into account is used to increase the viability of those results. As a client of the proposed learning system, the authors consider a contextual path planning application and they show in addition the benefit of integrating a client cache at this level. Our measures highlight the performance of each mechanism, according to different learning and caching strategies.

Publisher

IGI Global

Subject

Software

Reference21 articles.

1. Airiau, S., Padgham, L., Sardina, S., & Sen, S. (2008, May). Incorporating learning in BDI agents. In Workshop AAMAS: Adaptive and learning agents and MAS (ALAMAS+ ALAg) (pp. 49-56). ACM Estoril.

2. Time and Space Reasoning for Ambient Systems

3. Learning from situated experiences for a contextual planning guidance

4. Q-Learning: Theory and Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3