Heuristic Approach to Temporal Assignments of Spatial Grid Points for Vegetation Monitoring

Author:

Miori Virginia M.1,Clements Nicolle1,Segulin Brian W.2

Affiliation:

1. Saint Joseph's University, Philadelphia, USA

2. RoviSys, Aurora, USA

Abstract

In this research, vegetation trends are studied to give valuable information toward effective land use in the East African region, based on the normalized difference vegetation index (NDVI). Previously, testing procedures controlling the rate of false discoveries were used to detect areas with significant changes based on square regions of land. This article improves the assignment of grid points (pixels) to regions by formulating the spatial problem as a multidimensional temporal assignment problem. Lagrangian relaxation is applied to the problem allowing reformulation as a dynamic programming problem. A recursive heuristic approach with a penalty/reward function for pixel reassignment is proposed. This combined methodology not only controls an overall measure of combined directional false discoveries and nondirectional false discoveries, but make them as powerful as possible by adequately capturing spatial dependency present in the data. A larger number of regions are detected, while maintaining control of the mdFDR under certain assumptions.

Publisher

IGI Global

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference73 articles.

1. An Algorithm for the Three-Index Assignment Problem

2. Approximation algorithms for multi-dimensional assignment problems with decomposable costs

3. Local search heuristics for multi-index assignment problems with decomposable costs

4. Controlling the false discovery rate: A practical and powerful approach to multiple testing;Y.Benjamini;Journal of the Royal Statistical Society. Series A, (Statistics in Society),1995

5. Adaptive linear step-up procedures that control the false discovery rate

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3