Affiliation:
1. Saint Joseph's University, Philadelphia, USA
2. RoviSys, Aurora, USA
Abstract
In this research, vegetation trends are studied to give valuable information toward effective land use in the East African region, based on the normalized difference vegetation index (NDVI). Previously, testing procedures controlling the rate of false discoveries were used to detect areas with significant changes based on square regions of land. This article improves the assignment of grid points (pixels) to regions by formulating the spatial problem as a multidimensional temporal assignment problem. Lagrangian relaxation is applied to the problem allowing reformulation as a dynamic programming problem. A recursive heuristic approach with a penalty/reward function for pixel reassignment is proposed. This combined methodology not only controls an overall measure of combined directional false discoveries and nondirectional false discoveries, but make them as powerful as possible by adequately capturing spatial dependency present in the data. A larger number of regions are detected, while maintaining control of the mdFDR under certain assumptions.
Subject
General Earth and Planetary Sciences,General Environmental Science