Prospecting the Effect of Topic Modeling in Information Retrieval

Author:

Sharaff Aakanksha1,Dewangan Jitesh Kumar2,Sisodia Dilip Singh1ORCID

Affiliation:

1. National Institute of Technology, Raipur, India

2. Samsung Research Institute, Noida, India

Abstract

Enormous records and data are gathered every day. Organization of this data is a challenging task. Topic modeling provides a way to categorize these documents, where high dimensionality of the corpus affects the result of topic model, making it important to apply feature selection or information retrieval process for dimensionality reduction. The requirement for efficient topic modeling includes the removal of unrelated words that might lead to specious coexistence of the unrelated words. This paper proposes an efficient framework for the generation of better topic coherence, where term frequency-inverse document frequency (TF-IDF) and parsimonious language model (PLM) are used for the information retrieval task. PLM extracts the important information and expels the general words from the corpus, whereas TF-IDF re-estimates the weightage of each word in the corpus. The work carried out in this paper improved the topic coherence measure to provide a better correlation among the actual topic and the topics generated from PLM.

Publisher

IGI Global

Subject

Computer Networks and Communications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Practical Survey Private Search Engine Over the Web 3.0;Advances in Web Technologies and Engineering;2024-08-16

2. Cross-modal fabric image-text retrieval based on convolutional neural network and TinyBERT;Multimedia Tools and Applications;2023-12-29

3. Scientific Documents Retrieval Based on Graph Convolutional Network and Hesitant Fuzzy Set;IEEE Access;2023

4. Integration and Open Access System Based on Semantic Technologies;International Journal on Semantic Web and Information Systems;2022-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3