Affiliation:
1. Department of Computer Science, North Carolina State University, Raleigh, NC, USA
Abstract
Graph and semi-structured data are usually modeled in relational processing frameworks as “thin” relations (node, edge, node) and processing such data involves a lot of join operations. Intermediate results of joins with multi-valued attributes or relationships, contain redundant subtuples due to repetition of single-valued attributes. The amount of redundant content is high for real-world multi-valued relationships in social network (millions of Twitter followers of popular celebrities) or biological (multiple references to related proteins) datasets. In MapReduce-based platforms such as Apache Hive and Pig, redundancy in intermediate results contributes avoidable costs to the overall I/O, sorting, and network transfer overhead of join-intensive workloads due to longer workflows. Consequently, providing techniques for dealing with such redundancy will enable more nimble execution of such workflows. This paper argues for the use of a nested data model for representing intermediate data concisely using nesting-aware dataflow operators that allow for lazy and partial unnesting strategies. This approach reduces the overall I/O and network footprint of a workflow by concisely representing intermediate results during most of a workflow's execution, until complete unnesting is absolutely necessary. The proposed strategies are integrated into Apache Pig and experimental evaluation over real-world and synthetic benchmark datasets confirms their superiority over relational-style MapReduce systems such as Apache Pig and Hive.
Subject
Computer Networks and Communications,Information Systems
Reference30 articles.
1. An introduction to the completeness of languages for complex objects and nested relations
2. HadoopDB
3. Optimizing joins in a map-reduce environment
4. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., & Ives, Z. (2007). Dbpedia: A nucleus for a web of open data. The Semantic Web, 722–735.
5. Bialecki, A., Cafarella, M., Cutting, D., & O’Malley, O. (2005). Hadoop: A framework for running applications on large clusters built of commodity hardware. Retrieved from http://lucene.apache.org/hadoop
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献