Internet Data Analysis Methodology for Cyberterrorism Vocabulary Detection, Combining Techniques of Big Data Analytics, NLP and Semantic Web

Author:

Castillo-Zúñiga Iván1,Luna-Rosas Francisco Javier2,Rodríguez-Martínez Laura C.3,Muñoz-Arteaga Jaime4ORCID,López-Veyna Jaime Iván5ORCID,Rodríguez-Díaz Mario A.2

Affiliation:

1. Instituto Tecnológico del Llano, Aguascalientes / Instituto Tecnológico de Aguascalientes, Aguascalientes, Mexico

2. TecNM/Instituto Tecnológico de Aguascalientes, Aguascalientes, Mexico

3. Tecnológico Nacional de México/I.T. Aguascalientes, Mexico

4. Universidad Autonoma de Aguascalientes, Aguascalientes, Mexico

5. Instituto Tecnológico de Zacatecas, Zacatecas, Mexico

Abstract

This article presents a methodology for the analysis of data on the Internet, combining techniques of Big Data analytics, NLP and semantic web in order to find knowledge about large amounts of information on the web. To test the effectiveness of the proposed method, webpages about cyberterrorism were analyzed as a case study. The procedure implemented a genetic strategy in parallel, which integrates (Crawler to locate and download information from the web; to retrieve the vocabulary, using techniques of NLP (tokenization, stop word, TF, TFIDF), methods of stemming and synonyms). For the pursuit of knowledge was built a dataset through the description of a linguistic corpus with semantic ontologies, considering the characteristics of cyber-terrorism, which was analyzed with the algorithms, Random Forests (parallel), Boosting, SVM, neural network, K-nn and Bayes. The results reveal a percentage of the 95.62% accuracy in the detection of the vocabulary of cyber-terrorism, which were approved through cross validation, reaching 576% time savings with parallel processing.

Publisher

IGI Global

Subject

Computer Networks and Communications,Information Systems

Reference29 articles.

1. Towards a framework for the potential cyber-terrorist threat to critical national infrastructure

2. AVAST. (2017). Avast analiza el RamsomWare WannacryptOr 2.0 que ha infectado a NHS y telefónica. Retrieved from https://blog.avast.com/es/ransomware-telefonica-hospitales

3. Prediction of Aggressive Comments in Social Media: an Exploratory Study

4. A Handbook of Statistical Analyses using R

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3