Improving the Quality of Linked Data Using Statistical Distributions

Author:

Paulheim Heiko1,Bizer Christian1

Affiliation:

1. Data and Web Science Group, University of Mannheim, Mannheim, Germany

Abstract

Linked Data on the Web is either created from structured data sources (such as relational databases), from semi-structured sources (such as Wikipedia), or from unstructured sources (such as text). In the latter two cases, the generated Linked Data will likely be noisy and incomplete. In this paper, we present two algorithms that exploit statistical distributions of properties and types for enhancing the quality of incomplete and noisy Linked Data sets: SDType adds missing type statements, and SDValidate identifies faulty statements. Neither of the algorithms uses external knowledge, i.e., they operate only on the data itself. We evaluate the algorithms on the DBpedia and NELL knowledge bases, showing that they are both accurate as well as scalable. Both algorithms have been used for building the DBpedia 3.9 release: With SDType, 3.4 million missing type statements have been added, while using SDValidate, 13,000 erroneous RDF statements have been removed from the knowledge base.

Publisher

IGI Global

Subject

Computer Networks and Communications,Information Systems

Reference40 articles.

1. Crowdsourcing linked data quality assessment.;M.Acosta;Proceedings of the 12th International Semantic Web Conference,2013

2. Automatic expansion of DBpedia exploiting Wikipedia cross-language information.;A. P.Aprosio;Proceedings of the 10th Extended Semantic Web Conference (ESWC 2013),2013

3. LODifier: Generating Linked Data from Unstructured Text

4. Bizer, C., & Cyganiak, R. (2006). D2R Server – Publishing relational databases on the Semantic Web. Poster at the 5th International Semantic Web Conference.

5. Linked Data - The Story So Far

Cited by 133 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3