Detecting Human Diseases Relatedness

Author:

Fathalla Said1

Affiliation:

1. Bonn University, Bonn, Germany & Alexandria University, Alexandria, Egypt

Abstract

Due to the ubiquitous availability of the information on the web, there is a great need for a standardized representation of this information. Therefore, developing an efficient algorithm for retrieving information from knowledge graphs is a key challenge for many semantic web applications. This article presents spreading activation over ontology (SAOO) approach in order to detect the relatedness between two human diseases by applying spreading activation algorithm based on bidirectional search technique. The proposed approach detects two diseases relatedness by considering semantic domain knowledge. The methodology of the proposed work is divided into two phases: Semantic Matching and Diseases Relatedness Detection. In semantic matching, diseases within the user-submitted query are semantically identified in the ontology graph. In diseases relatedness detection, the relatedness between the two diseases is detected by using bidirectional-based spreading activation on the ontology graph. The classification of these diseases is provided as well.

Publisher

IGI Global

Subject

Computer Networks and Communications,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Semantic Framework Supporting Multilayer Networks Analysis for Rare Diseases;International Journal on Semantic Web and Information Systems;2022-04-15

2. CLOE: a cross-lingual ontology enrichment using multi-agent architecture;Enterprise Information Systems;2019-03-26

3. Exploring Diseases Relationships;Computational Methods and Algorithms for Medicine and Optimized Clinical Practice;2019

4. SemSur: A Core Ontology for the Semantic Representation of Research Findings;Procedia Computer Science;2018

5. Cross-Lingual Ontology Enrichment Based on Multi-Agent Architecture;Procedia Computer Science;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3