Traffic Density Estimation for Traffic Management Applications Using Neural Networks
Author:
Affiliation:
1. Indian Institute of Information Technology, Sri City, India
2. National Institute of Technology, Tiruchirappalli, India
Abstract
Traffic density is one of the elemental variables used in molding road traffic kinetics. Current density estimation techniques include loop detectors and sensors which are dependent on the crowd-sourcing of traffic data, which suffers from limited coverage and high cost. This article proposes a unique method to estimate traffic density based on neural network and mathematical modelling which uses surveillance feed from cameras. The proposed method can save both transportation costs and journey time, thus helping in better traffic management. The result analysis shows that the proposed method works well for varying traffic flow conditions and dynamic conditions.
Publisher
IGI Global
Reference20 articles.
1. Bochinski, E., Eiselein, V., & Sikora, T. (2017, August). High-Speed tracking-bydetection without using image information. In Advanced Video and Signal Based Surveillance (AVSS), 2017 14th IEEE International Conference on (pp. 1-6). IEEE.
2. Vehicle Detection and Counting by Using Headlight Information in the Dark Environment
3. Chen, T. H., Lin, Y. F., & Chen, T. Y. (2007, September). Intelligent vehicle counting method based on blob analysis in traffic surveillance. In Innovative Computing, Information and Control, 2007. ICICIC'07. Second International Conference on(pp. 238-238). IEEE.
4. A new performance measure and evaluation benchmark for road detection algorithms
5. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3