Trajectory Data Publication Based on Differential Privacy

Author:

Gu Zhen1ORCID,Zhang Guoyin1

Affiliation:

1. Harbin Engineering University, China

Abstract

Analyzing trajectory data can provide people with a higher quality of life. However, publishing trajectory data directly will leak privacy. The authors propose a trajectory data publication method based on differential privacy (TDDP). TDDP method consists of two stages. In the location generalization stage, firstly, the locations at each timestamp are clustered into classes by k-means++ algorithm, and then the representative location of each class is selected by using the exponential mechanism. In the generalized trajectory data publication stage, the authors design a sampling mechanism to form the generalized trajectories. The locations are sampled from the representative locations under different timestamps to form the generalized trajectories. The TDDP method can avoid the generation of non-semantic representative locations and ensure that the generalized trajectories can resist filtering attacks. The experimental results show that the trajectory data released by TDDP method can achieve a good balance between privacy protection and data availability.

Publisher

IGI Global

Subject

Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TPRT: a trajectory publishing scheme for the Internet of Vehicles based on radix tree;The Computer Journal;2024-07-06

2. Personalized trajectory privacy data publishing scheme based on differential privacy;Internet of Things;2024-04

3. Adjacent initial states-based differential privacy for probabilistic labeled Petri nets;Expert Systems with Applications;2024-03

4. Transaction Mechanism of Measurement and data Privacy;2023 International Conference on Evolutionary Algorithms and Soft Computing Techniques (EASCT);2023-10-20

5. UtilityAware: A framework for data privacy protection in e-health;Information Sciences;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3