Super-Resolution Reconstruction of Remote Sensing Images Based on Symmetric Local Fusion Blocks

Author:

Wang Xinqiang1ORCID,Lu Wenhuan2

Affiliation:

1. Tianjin Sino-German University of Applied Sciences, China

2. Tianjin University, China

Abstract

In view of the rich information and strong autocorrelation of remote sensing images, a super-resolution reconstruction algorithm based on symmetric local fusion blocks is proposed using a convolutional neural network based on local fusion blocks, which improves the effect of high-frequency information reconstruction. By setting local fusion in the residual block, the problem of insufficient high-frequency feature extraction is alleviated, and the reconstruction accuracy of remote sensing images of deep networks is improved. To improve the utilization of global features and reduce the computational complexity of the network, a residual method is used to set the symmetric jump connection between the local fusion blocks to form the symmetry between them. Experimental results show that the reconstruction results of 2-, 3-, and 4-fold sampling factors on the UC Merced and nwpu-resisc45 remote sensing datasets are better than those of comparison algorithms in image clarity and edge sharpness, and the reconstruction results are better in objective evaluation and subjective vision.

Publisher

IGI Global

Subject

Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3