Artificial Bee Colony and Deep Neural Network-Based Diagnostic Model for Improving the Prediction Accuracy of Diabetes

Author:

Srivastava Anand Kumar1,Kumar Yugal2ORCID,Singh Pradeep Kumar2ORCID

Affiliation:

1. ABES Engineering College, Ghaziabad, India & Jaypee University of Information Technology, Waknaghat, India

2. Jaypee University of Information Technology, Waknaghat, India

Abstract

A large number of machine learning approaches are implemented in healthcare field for effective diagnosis and prediction of different diseases. The aim of these machine learning approaches is to build automated diagnostic tool for helping the physician as well as monitor the health status of patients. These diagnostic tools are widely adopted in intensive care unit for life expectancy of patients. In this study, an effort is made to design an automated diagnostic model for the diagnosis and prediction of diabetes patients. The proposed diagnostic model is designed using artificial bee colony (ABC) algorithm and deep neural network (DNN) technique, called ABC-DNN-based diagnostic model. The ABC algorithm is applied to determine the relevant features for diabetes prediction and diagnosis while DNN technique is adopted for the prediction and diagnosis of diabetes affected patients. The performance of proposed diagnostic model is tested over Pima Indian Diabetes dataset and evaluated using accuracy, sensitivity, specificity, F-measure, Kappa, and area under curve (AUC) parameters. Further, 10-fold and 50-50% training-testing method are considered to assess the performance of proposed diagnostic model. The experimental results of proposed ABC-DNN model is compared with DNN technique and several existing diabetes studies. It is observed that proposed ABC-DNN model achieves 94.74% accuracy rate using 10-fold method.

Publisher

IGI Global

Subject

Health Informatics,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3