Affiliation:
1. VIT University, Vellore, India
Abstract
Quality analysis of the treatment of cancer has been an objective of e-health services for quite some time. The objective is to predict the stage of breast cancer by using diverse input parameters. Breast cancer is one of the main causes of death in women when compared to other tumors. The classification of breast cancer information can be profitable to anticipate diseases or track the hereditary of tumors. For classification, an artificial neural network (ANN) structure was carried out. In the structure, nine training algorithms are used and the proposed is the Levenberg-Marquardt algorithm. For optimizing the hidden layer and neuron, three optimization techniques are used. In the result, the best approval execution is anticipated and the diverse execution evaluation estimation for three optimization algorithms is researched. The correlation execution diagram for an accuracy of 95%, a sensitivity of 98%, and a specificity of 89% of a social spider optimization (SSO) algorithm are shown.
Subject
Health Informatics,Computer Science Applications
Reference27 articles.
1. Kumar, G. R., Ramachandra, D. G., & Nagamani, K. (2013). An efficient prediction of breast cancer data using data mining techniques. International Journal of Innovations in Engineering and Technology, 2(4), 139–144.
2. ISIBC: an intelligent system for identification of breast cancer.;A.Helwan;2015 International Conference on Advances in Biomedical Engineering (ICABME),2015
3. Increased risk of colorectal cancer in patients diagnosed with breast cancer in women
4. Comparative Study of Classification Techniques on Breast Cancer FNA Biopsy Data
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献