Comparison of Active COVID-19 Cases per Population Using Time-Series Models

Author:

Folorunso Sakinat Oluwabukonla1ORCID,Awotunde Joseph Bamidele2ORCID,Banjo Oluwatobi Oluwaseyi1ORCID,Ogundepo Ezekiel Adebayo3,Adeboye Nureni Olawale4

Affiliation:

1. Olabisi Onabanjo University, Ago Iwoye, Nigeria

2. University of Iliorin, Iliorin, Nigeria

3. Data Science Nigeria, Nigeria

4. Federal Polytechnic, Ilaro, Nigeria

Abstract

This research explored the precision of diverse time-series models for COVID-19 epidemic detection in all the thirty-six different states and the Federal Capital Territory (FCT) in Nigeria with the maximum count of daily cumulative of confirmed, recovered and death cases as of 4 November 2020 of COVID-19 and populace of each state. A 14-multi step ahead forecast system for active coronavirus cases was built, analyzed and compared for six (6) different deep learning-stimulated and statistical time-series models using two openly accessible datasets. The results obtained showed that based on RMSE metric, ARIMA model obtained the best values for four of the states (0.002537, 0.001969.12E-058, 5.36E-05 values for Lagos, FCT, Edo and Delta states respectively). While no method is all-encompassing for predicting daily active coronavirus cases for different states in Nigeria, ARIMA model obtains the highest-ranking prediction performance and attained a good position results in other states.

Publisher

IGI Global

Subject

Health Informatics,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Hybrid Outbreak Detection using Ontology-based Data Collection from Social Media;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

2. Explainable Artificial Intelligence in Genomic Sequence for Healthcare Systems Prediction;Connected e-Health;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3