Towards Better Segmentation of Abnormal Part in Multimodal Images Using Kernel Possibilistic C Means Particle Swarm Optimization With Morphological Reconstruction Filters

Author:

Sumathi R. 1,Mandadi Venkatesulu1

Affiliation:

1. KARE, India

Abstract

The authors designed an automated framework to segment tumors with various image sequences like T1, T2, and post-processed MRI multimodal images. Contrast-limited adaptive histogram equalization method is used for preprocessing images to enhance the intensity level and view the tumor part clearly. With the combination of kernel possibilistic c means clustering with particle swarm optimization technique, a tumor part is segmented, and morphological filters are applied to remove the unrelated outlier pixels in the segmented image to detect the accurate tumor part. The authors collected various image sequences from online resources like Harvard brain dataset, BRATS, and RIDER, and a few from clinical datasets. Efficiency is ensured by computing various performance metrics like Jaccard Index MSE, PSNR, sensitivity, specificity, accuracy, and computational time. The proposed approach yields 97.06% segmentation accuracy and 98.08% classification accuracy for multimodal images with an average of 5s for all multimodal images.

Publisher

IGI Global

Subject

Health Informatics,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3