Architectural Resiliency in Distributed Computing

Author:

Mikkilineni Rao1

Affiliation:

1. Kawa Objects Inc., Cupertino, CA, USA

Abstract

Cellular organisms have evolved to manage themselves and their interactions with their surroundings with a high degree of resiliency, efficiency and scalability. Signaling and collaboration of autonomous distributed computing elements accomplishing a common goal with optimal resource utilization are the differentiating characteristics that contribute to the computing model of cellular organisms. By introducing signaling and self-management abstractions in an autonomic computing element called Distributed Intelligent Managed Element (DIME), the authors improve the architectural resiliency, efficiency, and scaling in distributed computing systems. Described are two implementations of DIME network architecture to demonstrate auto-scaling, self-repair, dynamic performance optimization, and end to end distributed transaction management. By virtualizing a process (by converting it into a DIME) in the Linux operating system and also building a new native operating system called Parallax OS optimized for Intel-multi-core processors, which converts each core into a DIME, implications of the DIME computing model to future cloud computing services and datacenter infrastructure management practices and discuss the relationship of the DIME computing model to current discussions on Turing machines, Gödel’s theorems and a call for no less than a Kuhnian paradigm shift by some computer scientists.

Publisher

IGI Global

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3