Replica Placement Strategy for Data Grid Environment

Author:

Madi Mohammed K.1,Yusof Yuhanis1,Hassan Suhaidi1

Affiliation:

1. Universiti Utara Malaysia, Sintok, Kedah, Malaysia

Abstract

Data Grid is an infrastructure that manages huge amount of data files, and provides intensive computational resources across geographically distributed collaboration. To increase resource availability and to ease resource sharing in such environment, there is a need for replication services. Data replication is one of the methods used to improve the performance of data access in distributed systems by replicating multiple copies of data files in the distributed sites. Replica placement mechanism is the process of identifying where to place copies of replicated data files in a Grid system. Existing work identifies the suitable sites based on number of requests and read cost of the required file. Such approaches consume large bandwidth and increases the computational time. The authors propose a replica placement strategy (RPS) that finds the best locations to store replicas based on four criteria, namely, 1) Read Cost, 2) File Transfer Time, 3) Sites’ Workload, and 4) Replication Sites. OptorSim is used to evaluate the performance of this replica placement strategy. The simulation results show that RPS requires less execution time and consumes less network usage compared to existing approaches of Simple Optimizer and LFU (Least Frequently Used).

Publisher

IGI Global

Subject

Computer Networks and Communications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Keeping up with storage: Decentralized, write-enabled dynamic geo-replication;Future Generation Computer Systems;2018-09

2. A Two-Level Fuzzy Value-Based Replica Replacement Algorithm in Data Grids;Fuzzy Systems;2017

3. A Two-Level Fuzzy Value-Based Replica Replacement Algorithm in Data Grids;International Journal of Grid and High Performance Computing;2016-10

4. A survey of dynamic replication and replica selection strategies based on data mining techniques in data grids;Engineering Applications of Artificial Intelligence;2016-02

5. Maintaining Replicated Recovery Log for RESTful Services;International Journal of Grid and High Performance Computing;2015-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3