A Distributed System for The Management of Fine-grained Provenance

Author:

Sultana Salmin1,Bertino Elisa1

Affiliation:

1. Purdue University, West Lafayette, IN, USA

Abstract

Existing provenance systems operate at a single layer of abstraction (workflow/process/OS) at which they record and store provenance. However, the provenance captured from different layers provides the highest benefit when integrated through a unified provenance framework. To build such a framework, a comprehensive provenance model able to represent the provenance of data objects with various semantics and granularity is the first step. In this paper, the authors propose a provenance model able to represent the provenance of any data object captured at any abstraction layer and present an abstract schema of the model. The expressive nature of the model enables a wide range of provenance queries. The authors also illustrate the utility of their model in real world data processing systems. In the paper, they also introduce a data provenance distributed middleware system composed of several different components and services that capture provenance according to their model and securely stores it in a central repository. As part of our middleware, the authors present a thin stackable file system, called FiPS, for capturing local provenance in a portable manner. FiPS is able to capture provenance at various degrees of granularity, transform provenance records into secure information, and direct the resulting provenance data to various persistent storage systems.

Publisher

IGI Global

Subject

Hardware and Architecture,Information Systems,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Making the Pedigree to Your Big Data Repository: Innovative Methods, Solutions, and Algorithms for Supporting Big Data Privacy in Distributed Settings via Data-Driven Paradigms;2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC);2019-07

2. Internet of Perishable Logistics: Building Smart Fresh Food Supply Chain Networks;IEEE Access;2019

3. A Comprehensive Query Language for Provenance Information;International Journal of Cooperative Information Systems;2018-09

4. Pedigree-ing Your Big Data: Data-Driven Big Data Privacy in Distributed Environments;2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID);2018-05

5. Pattern mining based compression of IoT data;Proceedings of the Workshop Program of the 19th International Conference on Distributed Computing and Networking;2018-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3