Affiliation:
1. College of Arts and Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
Abstract
Wireless body sensor networks (WBSNs) plays a vital role in monitoring health conditions of patients and is a low-cost solution for dealing with several healthcare applications. Processing large amounts of data and making feasible decisions in emergency cases are the major challenges for WBSNs. Thus, this article addresses these challenges by designing a deep learning approach for health risk assessment by proposing a Fractional Cat-based Salp Swarm Algorithm (FCSSA). At first, the WBSN nodes are utilized for sensing data from patient health records to acquire certain parameters for making the assessment. Based on the obtained parameters, WBSN nodes transmit the data to the target node. Here, the hybrid Harmony Search Algorithm and Particle Swarm Optimization (hybrid HSA-PSO) is used for determining the optimal cluster head. Then, the results produced by the hybrid HSA-PSO are given to the target node, in which the Deep Belief Network (DBN) is used for classifying the health records for the health risk assessment. Here, the DBN is trained using the proposed FCSSA, which is developed by integrating a Fractional Cat Swarm Optimization (FCSO) and Salp Swarm Algorithm (SSA) for initiating the classification. The proposed FCSSA shows better performance using metrics, namely accuracy, energy and throughput with values 94.604, 0.145, and 0.058, respectively.
Subject
Computer Networks and Communications,Management Information Systems
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献