Intrusion Detection Using Deep Belief Network and Extreme Learning Machine

Author:

Alom Zahangir1,Bontupalli Venkata Ramesh1,Taha Tarek M.1

Affiliation:

1. Department of Electrical and Computer Engineering, University of Dayton, Dayton, OH, USA

Abstract

Security threats for computer networks have increased dramatically over the last decade, becoming bolder and more brazen. There is a strong need for effective Intrusion Detection Systems (IDS) that are designed to interpret intrusion attempts in incoming network traffic intelligently. In this paper, the authors explored the capabilities of Deep Belief Networks (DBN) – one of the most influential deep learning approach – in performing intrusion detection after training with the NSL-KDD dataset. Additionally, they examined the impact of using Extreme Learning Machine (ELM) and Regularized ELM on the same dataset to evaluate the performance against DBN and Support Vector Machine (SVM) approaches. The trained system identifies any type of unknown attack in the dataset examined. In addition to detecting attacks, the proposed system also classifies them into five groups. The implementation with DBN and SVM give a testing accuracy of about 97.5% and 88.33% respectively with 40% of training data selected from the NSL-KDD dataset. On the other hand, the experimental results show around 98.20% and 98.26% testing accuracy respectively for ELM and RELM after reducing the data dimensions from 41 to 9 essential features with 40% training data. ELM and RELM perform better in terms of testing accuracy upon comparison with DBN and SVM.

Publisher

IGI Global

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ensemble Two Stage Machine Learning for Network Abnormal Detection;Proceedings of the 2023 15th International Conference on Machine Learning and Computing;2023-02-17

2. Intrusion Detection System Based on Machine Learning Techniques: A Survey;2022 2nd International Conference on Advances in Engineering Science and Technology (AEST);2022-10-24

3. Full-Rotation Quantum Convolutional Neural Network for Abnormal Intrusion Detection System;Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition;2022-09-23

4. An Intrusion Detection System based on PSO-GWO Hybrid Optimized Support Vector Machine;2021 International Joint Conference on Neural Networks (IJCNN);2021-07-18

5. Design and Validation of BlockEval, A Blockchain Simulator;2021 International Conference on COMmunication Systems & NETworkS (COMSNETS);2021-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3