Abstract
Personalized information retrieval is an effective tool to solve the problem of information overload. Along with the rapid development of emerging network technologies such as cloud computing, however, network servers are becoming more and more untrusted, resulting in a serious threat to user privacy of personalized information retrieval. In this paper, we propose a basic framework for the comprehensive protection of all kinds of user privacy in personalized information retrieval. Its basic idea is to construct and submit a group of well-designed dummy requests together with each user request to the server, to mix up the user requests and then cover up the user privacy behind the requests. Also, the framework includes a privacy model and its implementation algorithm. Finally, theoretical analysis and experimental evaluation demonstrate that the framework can comprehensively improve the security of all kinds of user privacy, without compromising the availability of personalized information retrieval.
Subject
Strategy and Management,Computer Science Applications,Human-Computer Interaction
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献