On the Application of Quick Artificial Bee Colony Algorithm (qABC) for Attenuation of Test Suite in Real-Time Software Applications

Author:

Jeya Mala D. 1,Prabha Ramalakshmi2

Affiliation:

1. Vellore Institute of Technology, Chennai, India

2. Anna University, Madurai, India

Abstract

Software testing plays a vital role during the software development process, as it ensures quality software deployment. Success of software testing depends on the design of effective test cases. To achieve the optimization of generated test cases, the proposed approach combines both global and local searches by means of intelligent agents which exhibit the behaviour of employed bees, onlooker bees, and scout bees in the qABC algorithm. The proposed qABC algorithm has key improvements over the basic artificial bee colony algorithm (ABC) in test optimization by reducing redundancy, filtering of test cases in each iteration and parallel working of the bees. Further, the fitness evaluation of the test cases is done by employing two test adequacy metrics namely path coverage and mutation score. Further, the experimental evaluation of qABC, GA, and the basic ABC based test cases is done using several case study applications. The result shows that qABC outperforms the other algorithms in terms of effectiveness of test cases in revealing the faults with less time and a smaller number of test cases.

Publisher

IGI Global

Subject

Decision Sciences (miscellaneous),Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Optimizing Software Test Data by Applying Adaptive Differential Evolution Algorithm;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

2. Application of Artificial Bee Colony Algorithm in Intelligent Price Supervision System of Digital Economy;2023 2nd International Conference on Data Analytics, Computing and Artificial Intelligence (ICDACAI);2023-10-17

3. Classification and security assessment of android apps;Discover Internet of Things;2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3