Load Frequency Control in Power System via Improving PID Controller Based on Particle Swarm Optimization and ANFIS Techniques

Author:

Bahgaat Naglaa K.1,El-Sayed M. I.2,Hassan M. A. Moustafa3,Bendary F. A.4

Affiliation:

1. Elec. Comm. Dept. Faculty of Engineering, Canadian International College (CIC), 6 October City, Giza, Egypt

2. Electrical Power Engineering Dept. Faculty of Engineering, Al-Azhar University, Cairo, Egypt

3. Electrical Power Engineering Dept. Faculty of Engineering, Cairo University, Giza, Egypt

4. Electrical Power Engineering Dept. Faculty of Engineering, Banha University, Cairo, Egypt

Abstract

The main objective of Load Frequency Control (LFC) is to regulate the power output of the electric generator within an area in response to changes in system frequency and tie-line loading. Thus the LFC helps in maintaining the scheduled system frequency and tie-line power interchange with the other areas within the prescribed limits. Most LFCs are primarily composed of an integral controller. The integrator gain is set to a level that compromises between fast transient recovery and low overshoot in the dynamic response of the overall system. This type of controller is slow and does not allow the controller designer to take into account possible changes in operating conditions and non-linearities in the generator unit. Moreover, it lacks robustness. This paper studies LFC in two areas power system using PID controller. In this paper, PID parameters are tuned using different tuning techniques. The overshoots and settling times with the proposed controllers are better than the outputs of the conventional PID controllers. This paper uses MATLAB/SIMULINK software. Simulations are done by using the same PID parameters for the two different areas because it gives a better performance for the system frequency response than the case of using two different sets of PID parameters for the two areas. The used methods in this paper are: a) Particle Swarm Optimization, b) Adaptive Weight Particle Swarm Optimization, c) Adaptive Acceleration Coefficients based PSO (AACPSO) and d) Adaptive Neuro Fuzzy Inference System (ANFIS). The comparison has been carried out for these different controllers for two areas power system. Therefore, the article presents advanced techniques for Load Frequency Control. These proposed techniques are based on Artificial Intelligence. It gives promising results.

Publisher

IGI Global

Subject

General Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3