Feature Extraction of Dialogue Text Based on Big Data and Machine Learning

Author:

Liu Xuelin1,Zhang Hua1,Cheng Yue2

Affiliation:

1. Weifang University, China

2. Adamson University, Philippines

Abstract

In this article, a dialogue text feature extraction model based on big data and machine learning is constructed, which transforms the high-dimensional space of text features into the low-dimensional space that is easy to process, so that the best feature words can be selected to represent the document set. Tests show that in most cases, the classification accuracy of this model is higher than 88%, and the recall rate is higher than 85%, thus achieving the goal of higher classification accuracy with less computation. When extracting the features of dialogue texts, there is no need for preprocessing, just count the data such as lexical composition, sentence length and sentence-to-sentence relationship of the target text, and make linear analysis to obtain key indicators and weights. Based on this, the classification model can achieve good results, thus effectively reducing the workload and computation of text classification.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3