Oppositional GOA Applied to Renewable Energy-Based Multi-Objective Economic Emission Dispatch
Author:
Affiliation:
1. Central Institute of Petrochemicals Engineering and Technology, Haldia, India
2. Kalyani Government Engineering College, Kalyani, India
Abstract
The renewable economic emission transmit is a significant and new assignment in the modern power system. This article develops oppositional grasshopper optimization algorithm (OGOA) which depends on the social dealings of the grasshopper in nature, to solve renewable energy based economic emission dispatch (EED) considering uncertainty in wind power availability and a carbon tax on emission from the thermal unit. To speed up the convergence speed and advance the simulation results, opposition based learning (OBL) is integrated with the fundamental GOA in OGOA algorithm. To show the nonlinearity of wind power availability the Weibull distribution is used. A standard system, containing of two wind farms and six thermal units is used for testing the dispatch model for three different loads. The statistical outcomes of the applied OGOA technique are compared with basic GOA and quantum-inspired particle swarm optimization (QPSO) optimization. It is observed OGOA is more skillful than basic GOA technique for significantly reducing the computation time and developing hopeful outcomes.
Publisher
IGI Global
Subject
General Medicine,General Chemistry
Reference50 articles.
1. Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES)
2. Scenario-based dynamic economic emission dispatch considering load and wind power uncertainties
3. A dynamic economic emission dispatch considering wind power uncertainty incorporating energy storage system and demand side management
4. Cost analysis of a power system using probabilistic optimal power flow with energy storage integration and wind generation
Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Combination of Energy Storage and Renewable Energies to Reach a Maximum Profit for Power Systems;IEEE Access;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3