Rule-Based Semantic Concept Classification from Large-Scale Video Collections

Author:

Lin Lin1,Shyu Mei-Ling1,Chen Shu-Ching2ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA

2. School of Computing and Information Sciences, Florida International University, Miami, FL, USA

Abstract

The explosive growth and increasing complexity of the multimedia data have created a high demand of multimedia services and applications in various areas so that people can access and distribute the data easily. Unfortunately, traditional keyword-based information retrieval is no longer suitable. Instead, multimedia data mining and content-based multimedia information retrieval have become the key technologies in modern societies. Among many data mining techniques, association rule mining (ARM) is considered one of the most popular approaches to extract useful information from multimedia data in terms of relationships between variables. In this paper, a novel rule-based semantic concept classification framework using weighted association rule mining (WARM), capturing the significance degrees of the feature-value pairs to improve the applicability of ARM, is proposed to deal with major issues and challenges in large-scale video semantic concept classification. Unlike traditional ARM that the rules are generated by frequency count and the items existing in one rule are equally important, our proposed WARM algorithm utilizes multiple correspondence analysis (MCA) to explore the relationships among features and concepts and to signify different contributions of the features in rule generation. To the authors best knowledge, this is one of the first WARM-based classifiers in the field of multimedia concept retrieval. The experimental results on the benchmark TRECVID data demonstrate that the proposed framework is able to handle large-scale and imbalanced video data with promising classification and retrieval performance.

Publisher

IGI Global

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Implementation of Knowledge Extraction Tool for Teaching Video Based on Verbal Behavior Characteristics;2023 13th International Conference on Information Technology in Medicine and Education (ITME);2023-11-24

2. Counterfactual Autoencoder for Unsupervised Semantic Learning;Deep Learning and Neural Networks;2020

3. Counterfactual Autoencoder for Unsupervised Semantic Learning;International Journal of Multimedia Data Engineering and Management;2018-10

4. MCA-NN: Multiple Correspondence Analysis Based Neural Network for Disaster Information Detection;2017 IEEE Third International Conference on Multimedia Big Data (BigMM);2017-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3