Maxmin Data Range Heuristic-Based Initial Centroid Method of Partitional Clustering for Big Data Mining

Author:

Pandey Kamlesh Kumar1ORCID,Shukla Diwakar1

Affiliation:

1. Dr. Harisingh Gour Vishwavidyalaya, India

Abstract

The centroid-based clustering algorithm depends on the number of clusters, initial centroid, distance measures, and statistical approach of central tendencies. The initial centroid initialization algorithm defines convergence speed, computing efficiency, execution time, scalability, memory utilization, and performance issues for big data clustering. Nowadays various researchers have proposed the cluster initialization techniques, where some initialization techniques reduce the number of iterations with the lowest cluster quality, and some initialization techniques increase the cluster quality with high iterations. For these reasons, this study proposed the initial centroid initialization based Maxmin Data Range Heuristic (MDRH) method for K-Means (KM) clustering that reduces the execution times, iterations, and improves quality for big data clustering. The proposed MDRH method has compared against the classical KM and KM++ algorithms with four real datasets. The MDRH method has achieved better effectiveness and efficiency over RS, DB, CH, SC, IS, and CT quantitative measurements.

Publisher

IGI Global

Subject

General Medicine

Reference51 articles.

1. Aggarwal, C. C., & Reddy, C. K. (2013). DATA Custering Algorithms and Applications. Academic Press.

2. A survey of clustering techniques for big data analysis

3. k-means++: The Advantages of Careful Seeding.;D.Arthur;SODA ’07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,2007

4. Astrahan, M. M. (1970). speech analysis by clustering, or the hyperphoneme method. Academic Press.

5. Refining Initial Points for K-Means Clustering.;P. S.Bradley;15th International Conference on Machine Learning (ICML98),1998

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3