Chinese Text Categorization via Bottom-Up Weighted Word Clustering

Author:

Wu Yu-Chieh1

Affiliation:

1. Ming-Chuan University, Taipei, Taiwan

Abstract

Most of the researches on text categorization are focus on using bag of words. Some researches provided other methods for classification such as term phrase, Latent Semantic Indexing, and term clustering. Term clustering is an effective way for classification, and had been proved as a good method for decreasing the dimensions in term vectors. The authors used hierarchical term clustering and aggregating similar terms. In order to enhance the performance, they present a modify indexing with terms in cluster. Their test collection extracted from Chinese NETNEWS, and used the Centroid-Based classifier to deal with the problems of categorization. The results had shown that term clustering is not only reducing the dimensions but also outperform than bag of words. Thus, term clustering can be applied to text classification by using any large corpus, its objective is to save times and increase the efficiency and effectiveness. In addition to performance, these clusters can be considered as conceptual knowledge base, and kept related terms of real world.

Publisher

IGI Global

Subject

Information Systems and Management,Computer Science Applications,Management Information Systems

Reference32 articles.

1. Automated learning of decision rules for text categorization

2. Distributional clustering of words for text classification

3. Hierarchical Word Clustering for Relevance Judgments in Information Retrieval.;N.Bassiou;Proceedings of the 1st International Workshop on Pattern Recognition in Information Systems,2001

4. Distributional word clusters vs. words for text categorization.;R.Bekkerman;Journal of Machine Learning Research,2003

5. On feature distributional clustering for text categorization

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Text Classification Based on Automatically Extracted Keywords;International Journal of Enterprise Information Systems;2020-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3