A Hybrid Model for Emotion Detection from Text

Author:

Fathy Samar1,El-Haggar Nahla1,Haggag Mohamed H.1

Affiliation:

1. Faculty of Computers and Information, Helwan University, Helwan, Egypt

Abstract

Emotions can be judged by a combination of cues such as speech facial expressions and actions. Emotions are also articulated by text. This paper shows a new hybrid model for detecting emotion from text which depends on ontology with keywords semantic similarity. The text labelled with one of the six basic Ekman emotion categories. The main idea is to extract ontology from input sentences and match it with the ontology base which created from simple ontologies and the emotion of each ontology. The ontology extracted from the input sentence by using a triplet (subject, predicate, and object) extraction algorithm, then the ontology matching process is applied with the ontology base. After that the emotion of the input sentence is the emotion of the ontology which it matches with the highest score of matching. If the extracted ontology doesn't match with any ontology from the ontology base, then the keyword semantic similarity approach used. The suggested approach depends on the meaning of each sentence, the syntax and semantic analysis of the context.

Publisher

IGI Global

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extracting emotion from resource poor language through transfer learning;Multimedia Tools and Applications;2024-07-30

2. A Comparative Study of Text-Based Emotion Detection Techniques for Emotion Recognition on Social Media Data;2023 IEEE 7th Conference on Information and Communication Technology (CICT);2023-12-15

3. Deep-EmoRU: mining emotions from roman urdu text using deep learning ensemble;Multimedia Tools and Applications;2022-05-21

4. Context Aware Emotion Detection from Low Resource Urdu Language using Deep Neural Network;ACM Transactions on Asian and Low-Resource Language Information Processing;2022-04

5. Designing a Hybrid Approach for Web Recommendation Using Annotation;Applications of Computational Science in Artificial Intelligence;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3