Hybrid Approach for Single Text Document Summarization Using Statistical and Sentiment Features

Author:

Yadav Chandra Shekhar1,Sharan Aditi1

Affiliation:

1. Jawaharlal Nehru University, Delhi, India

Abstract

Summarization is a way to represent same information in concise way with equal sense. This can be categorized in two type Abstractive and Extractive type. Our work is focused around Extractive summarization. A generic approach to extractive summarization is to consider sentence as an entity, score each sentence based on some indicative features to ascertain the quality of sentence for inclusion in summary. Sort the sentences on the score and consider top n sentences for summarization. Mostly statistical features have been used for scoring the sentences. A hybrid model for a single text document summarization is being proposed. This hybrid model is an extraction based approach, which is combination of Statistical and semantic technique. The hybrid model depends on the linear combination of statistical measures: sentence position, TF-IDF, Aggregate similarity, centroid, and semantic measure. The idea to include sentiment analysis for salient sentence extraction is derived from the concept that emotion plays an important role in communication to effectively convey any message hence, it can play a vital role in text document summarization. For comparison, five system summaries have been generated: Proposed Work, MEAD system, Microsoft system, OPINOSIS system, and Human generated summary, and evaluation is done using ROUGE score.

Publisher

IGI Global

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HSFO: Hunter Sail Fish Optimizer enabled deep learning for single document abstractive summarization based on semantic role labelling for Telugu text;2023-05-08

2. Hybridization of Fuzzy Theory and Nature-Inspired Optimization for Medical Report Summarization;Nature-Inspired Optimization Methodologies in Biomedical and Healthcare;2022-11-15

3. Topic Sentiment Analysis for Twitter Data in Indian Languages Using Composite Kernel SVM and Deep Learning;ACM Transactions on Asian and Low-Resource Language Information Processing;2022-08-25

4. Systematic review of methods used in text summarization;2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE);2022-04-28

5. Latent Semantic Based Fuzzy Kernel Support Vector Machine for Automatic Content Summarization;Intelligent Automation & Soft Computing;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3