POS Tagging and NER System for Kannada Using Conditional Random Fields

Author:

Swamy Arpitha1,Srinath S. 2

Affiliation:

1. Department of Computer Science and Engineering, Government Polytechnic, Krishnarajpet, India

2. Department of Computer Science and Engineering, JSS Science and Technology University, Mysuru, India

Abstract

Parts-of-speech (POS) tagging is a method used to assign the POS tag for every word present in the text, and named entity recognition (NER) is a process to identify the proper nouns in the text and to classify the identified nouns into certain predefined categories. A POS tagger and a NER system for Kannada text have been proposed utilizing conditional random fields (CRFs). The dataset used for POS tagging consists of 147K tokens, where 103K tokens are used for training and the remaining tokens are used for testing. The proposed CRF model for POS tagging of Kannada text obtained 91.3% of precision, 91.6% of recall, and 91.4% of f-score values, respectively. To develop the NER system for Kannada, the data required is created manually using the modified tag-set containing 40 labels. The dataset used for NER system consists of 16.5K tokens, where 70% of the total words are used for training the model, and the remaining 30% of total words are used for model testing. The developed NER model obtained the 94% of precision, 93.9% of recall, and 93.9% of F1-measure values, respectively.

Publisher

IGI Global

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Defect Detection Method of Overhead Line Pins Based on Multi-Sensor Data Acquisition of UAV;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

2. Enhancing HMM-based POS tagger for Mizo language;Journal of Intelligent & Fuzzy Systems;2023-12-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3