Affiliation:
1. The National University of Malaysia, Bangi, Malaysia
2. Yarmouk University, Jordan, Jordan
Abstract
The filtering of a large amount of data is an important process in data mining tasks, particularly for the categorization of unstructured high dimensional data. Therefore, a feature selection process is desired to reduce the space of high dimensional data into small relevant subset dimensions that represent the best features for text categorization. In this article, three enhanced filter feature selection methods, Category Relevant Feature Measure, Modified Category Discriminated Measure, and Odd Ratio2, are proposed. These methods combine the relevant information about features in both the inter- and intra-category. The effectiveness of the proposed methods with Naïve Bayes and associative classification is evaluated by traditional measures of text categorization, namely, macro-averaging of precision, recall, and F-measure. Experiments are conducted on three Arabic text datasets used for text categorization. The experimental results showed that the proposed methods are able to achieve better and comparable results when compared to 12 well known traditional methods.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献