Deep Neural Network and Time Series Approach for Finance Systems

Author:

Srivastava Praveen Ranjan1ORCID,Zuopeng (Justin) Zhang 2,Eachempati Prajwal1

Affiliation:

1. Indian Institute of Management, Rohtak, India

2. University of North Florida, USA

Abstract

The stock market is an aggregation of investor sentiment that affects daily changes in stock prices. Investor sentiment remained a mystery and challenge over time, inviting researchers to comprehend the market trends. The entry of behavioral scientists in and around the 1980s brought in the market trading's human dimensions. Shortly after that, due to the digitization of exchanges, the mix of traders changed as institutional traders started using algorithmic trading (AT) on computers. Nevertheless, the effects of investor sentiment did not disappear and continued to intrigue market researchers. Though market sentiment plays a significant role in timing investment decisions, classical finance models largely ignored the role of investor sentiment in asset pricing. For knowing if the market price is value-driven, the investor would isolate components of irrationality from the price, as reflected in the sentiment. Investor sentiment is an expression of irrational expectations of a stock's risk-return profile that is not justified by available information. In this context, the paper aims to predict the next-day trend in the index prices for the centralized Indian National Stock Exchange (NSE) deploying machine learning algorithms like support vector machine, random forest, gradient boosting, and deep neural networks. The training set is historical NSE closing price data from June 1st, 2013-June 30th, 2020. Additionally, the authors factor technical indicators like moving average (MA), moving average convergence-divergence (MACD), K (%) oscillator and corresponding three days moving average D (%), relative strength indicator (RSI) value, and the LW (R%) indicator for the same period. The predictive power of deep neural networks over other machine learning techniques is established in the paper, demonstrating the future scope of deep learning in multi-parameter time series prediction.

Publisher

IGI Global

Subject

Strategy and Management,Computer Science Applications,Human-Computer Interaction

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3