Efficient VM Selection Strategies in Cloud Datacenter Using Fuzzy Soft Set

Author:

Baskaran Nithiya1ORCID,Eswari R. 1

Affiliation:

1. National Institute of Technology, Tiruchirappalli, India

Abstract

A cloud data center is established to meet the storage demand due to the rate of growth of data. The inefficient use of resources causes an enormous amount of power consumption in data centers. In this paper, a fuzzy soft set-based virtual machine (FSS_VM) consolidation algorithm is proposed to address this problem. The algorithm uses four thresholds to detect overloaded hosts and applies fuzzy soft set approach to select appropriate VM for migration. It considers all factors: CPU utilization, memory usage, RAM usage, and correlation values. The algorithm is experimentally tested for 11 different combinations of choice parameters where each combination is considered as fuzzy soft set and compared with existing algorithms for various metrics. The experimental results show that proposed FSS_VM algorithm achieves significant improvement in optimizing the objectives such as power consumption, service level agreement violation rate, and VM migrations compared to all existing algorithms. Moreover, performance comparison among the fuzzy soft set-based VM selection methods are made, and Pareto-optimal fuzzy soft sets are identified. The results show that the Pareto-based VM selection improves the QoS. The time complexity of the proposed algorithm increases when it finds best VM for migration. The future work will reduce the time complexity and will concentrate on developing an efficient VM placement strategy for VM migration since it has the greater impact on improving QoS in VM placement.

Publisher

IGI Global

Subject

Strategy and Management,Computer Science Applications,Human-Computer Interaction

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3