Intelligent Information Retrieval for Reducing Missed Cancer and Improving the Healthcare System
Author:
Affiliation:
1. The NorthCap University, India
Abstract
This study presents an intelligent information retrieval system that will effectively extract useful information from breast cancer datasets and utilized that information to build a classification model. The proposed model will reduce the missed cancer rate by providing a comprehensive decision support to the radiologist. The model is built on two datasets, Wisconsin Breast Cancer Dataset (WBCD) and 365 free text mammography reports from a hospital. Effective pre-processing techniques including filling missing values with regression, an effective Natural Language Processing (NLP) Parser is developed to handle free text mammography reports, balancing the dataset with Synthetic Minority Oversampling (SMOTE) was applied to prepare the dataset for learning. Most relevant features were selected with the help of filter method and tf-idf scores. K-NN and SGD classifiers are optimized with optimum value of k for K-NN and hyper tuning the SGD parameters with grid search technique.
Publisher
IGI Global
Subject
General Medicine
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A scoping review of natural language processing of radiology reports in breast cancer;Frontiers in Oncology;2023-04-12
2. Large-Scale Knowledge Synthesis and Complex Information Retrieval from Biomedical Documents;2022 IEEE International Conference on Big Data (Big Data);2022-12-17
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3