Affiliation:
1. MARS Research Unit, University of Monastir, Monastir, Tunisia
Abstract
This paper proposes a new relevance feedback approach to collaborative information retrieval based on a confidence's network, which performs propagation relevance between annotations terms. The main contribution of our approach is to extract relevant terms to reformulate the initial user query considering the annotations as an information source. The proposed model introduces the concept of necessity that allows determining the terms that have strong association relationships. The authors estimated the association relationship to a measure of a confidence. Another contribution consists on determining the relevant annotations for a given evidence source. Since the user is over whelmed by a variety of contradictory annotations on even one which are far from the original subject, the authors' model proceed filtering these annotations to determine the relevant one and then it classify them by grouping those related semantically. The experimental study conducted on different queries gives promoters results. They show very encouraging results that could reach an improvement rate.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献