A Highly Efficient Remote Access Trojan Detection Method

Author:

Jiang Wei1,Wu Xianda2,Cui Xiang3,Liu Chaoge4

Affiliation:

1. Beijing University of Technology, Chinese Academy of Cyberspace Studies, Beijing, China

2. Beijing University of Technology, Beijing, China

3. Guangzhou University, Guangzhou, China

4. Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

Abstract

Nowadays, machine learning is popular in remote access Trojan (RAT) detection which can create patterns for decision-making. However, most research focus on improving the detection rate and reducing the false negative rate, therefore they ignore the result of abnormal samples. In addition, most classifiers select several proprietary applications and RATs as their training set, which makes them difficult to adapt to the real environment. In this article, the authors address the issue of imbalance dataset between normal and RAT samples, and propose a highly efficient method of detecting RATs in real traffic. In the authors method, they generate eight features by combining the size, the inter-arrival and the flag from one packet sequence. Then, they preprocess the imbalance dataset and implement a classifier by XGBoost algorithm. The classifier achieves a false negative rate of less than 0.18%. Moreover, the authors demonstrate that their classifier is capable of detecting unknown RAT.

Publisher

IGI Global

Subject

Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3