Random Grid and Reversible Watermarking-Based On Verifiable Secret Sharing for Outsourcing Images in Cloud

Author:

Gao Hang1,Hu Mengting1,Gao Tiegang2,Cheng Renhong1

Affiliation:

1. College of Computer and Control Engineering, Nankai University, Tianjin, China

2. College of Software, Nankai University, Tianjin, China

Abstract

A novel random grid and reversible watermarking based verifiable secret sharing scheme for outsourcing image in cloud is proposed in the paper. In the proposed scheme, data owner firstly embeds the hash value of the secret image into the secret image itself using reversible watermarking algorithm; then, watermarked image is divided into $n$ sub image. Secondly, the hash of n sub image is calculated, and then the hash value is transformed into the initial value of hyper-chaos, thus n random grids are generated by different hyper-chaos. Lastly, after expanding the sub-image to the same size with the original secret image, it is performer XOR operation with the corresponding random grid, this will accordingly produce $n$ sharing secret. In order to securely outsource the image in the cloud, the generated shares are issued to the $n$ different cloud server. For authorized user, (s)he can get shares from different cloud server, and then can recover the original secret image through a series of decryption operations and extraction of reversible watermarking. The proposed scheme can losslessly restore the original secret image, and have the double verification ability, that is to say, it can verify whether the anyone of the sharing is modified, and it can also verify whether the original secret image is completely reconstructed. Some analysis and comparisons are given to show the security and effectiveness of proposed scheme.

Publisher

IGI Global

Subject

Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Verifiable Privacy Preservation Scheme for Outsourcing Medi-cal Image to Cloud Through ROI Based Crypto-Watermarking;2023 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics);2023-12-17

2. A verifiable threshold secret image sharing (SIS) scheme with combiner verification and cheater identification;Journal of Ambient Intelligence and Humanized Computing;2022-07-29

3. Verifiable varying sized (m,n,n) multi-image secret sharing with combiner verification and cheater identification;Journal of Visual Communication and Image Representation;2022-04

4. A verifiable secret sharing scheme with combiner verification and cheater identification;Journal of Information Security and Applications;2020-04

5. Cloud-ElGamal and Fast Cloud-RSA Homomorphic Schemes for Protecting Data Confidentiality in Cloud Computing;International Journal of Digital Crime and Forensics;2019-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3