Ruler Detection for Autoscaling Forensic Images

Author:

Bhalerao Abhir1,Reynolds Gregory2

Affiliation:

1. Department of Computer Science, University of Warwick, Warwick, Coventry, UK

2. Pattern Analytics Research Ltd, Solihull, UK

Abstract

The assessment of forensic photographs often requires the calibration of the resolution of the image so that accurate measurements can be taken of crime-scene exhibits or latent marks. In the case of latent marks, such as fingerprints, image calibration to a given dots-per-inch is a necessary step for image segmentation, preprocessing, extraction of feature minutiae and subsequent fingerprint matching. To enable scaling, such photographs are taken with forensic rulers in the frame so that image pixel distances can be converted to standard measurement units (metric or imperial). In forensic bureaus, this is commonly achieved by manual selection of two or more points on the ruler within the image, and entering the units of the measure distance. The process can be laborious and inaccurate, especially when the ruler graduations are indistinct because of poor contrast, noise or insufficient resolution. Here the authors present a fully automated method for detecting and estimating the direction and graduation spacing of rulers in forensic photographs. The method detects the location of the ruler in the image and then uses spectral analysis to estimate the direction and wavelength of the ruler graduations. The authors detail the steps of the algorithm and demonstrate the accuracy of the estimation on both a calibrated set of test images and a wide collection of good and poor quality crime-scene images. The method is shown to be fast and accurate and has wider application in other imaging disciplines, such as radiography, archaeology and surveying.

Publisher

IGI Global

Subject

Software

Reference19 articles.

1. Baba, T., Ueda, K., & Nakagawa, Y. (2005). Detection of scale interval on a ruler in digital image. In Proc. Data Engineering Workshop (DEWS 2005).

2. YIN, a fundamental frequency estimator for speech and music

3. Use of the Hough transformation to detect lines and curves in pictures

4. Ruler-Based Automatic Stitching of Spatially Overlapping Radiographs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3