Affiliation:
1. National Institute of Technology, Sikkim, India
2. Malaviya National Institute of Technology, Jaipur, India
3. J. K. Lakshmipat University, India
Abstract
In this modern era, due to demand for cloud environments in business, the size, complexity, and chance of attacks to virtual cloud network (VCN) are increased. The protection of VCN is required to maintain the faith of the cloud users. Intrusion detection is essential to secure any network. The existing approaches that use the conventional neural network cannot utilize all information for identifying the intrusions. In this paper, the anomaly-based NIDS for VCN is proposed. For feature selection, grey wolf optimization (GWO) is hybridized with a bald eagle search (BES) algorithm. For classification, a deep learning approach - deep sparse auto-encoder (DSAE) is employed. In this way, this paper proposes a NIDS model for VCN named - GWO-DES-DSAE. The proposed system is simulated in the python programming environment. The proposed NIDS model's performance is compared with other recent approaches for both binary and multi-class classification on the considered datasets - NSL-KDD, UNSW-NB15, and CICIDS 2017 and found better than other methods.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献