Multivariate Optimization of the Cutting Parameters when Turning Slender Components

Author:

Filho A.R. Silva1,Abrão A.M.1,Paiva A.P.2,Ferreira J.R.2

Affiliation:

1. Department of Mechanical Engineering, Universidade Federal de Minas Gerais, Minas Gerais, Brazil

2. Institute of Production Engineering, Universidade Federal de Itajubá, Minas Gerais, Brazil

Abstract

The geometric features of the work piece and the cutting parameters considerably affect the quality of a finished part subjected to any machining operation owing to the imposed elastic and plastic deformations, especially when slender components are produced. This work is focused on the influence of the work piece slenderness ratio and cutting parameters on the quality of the machined part, assessed in terms of surface roughness and both geometric (run-out) and dimensional (diameter) deviations. Turning tests with coated tungsten carbide tools were performed using AISI 1045 medium carbon steel as work material. Differently from the published literature, a statistical analysis based on the multivariate one-way analysis of variance (MANOVA) was applied to the data obtained using a Box-Behnken experimental design. In order to identify the combination of parameters (slenderness ratio, cutting speed, feed rate and depth of cut) levels which simultaneously optimize the responses of interest (surface roughness, run-out and diameter deviation), a multivariate optimization method based on principal component analysis (PCA) and generalized reduced gradient (GRG) was employed.

Publisher

IGI Global

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3