Affiliation:
1. Nuclear and Energy Research Institute, São Paulo, Brazil
2. Faculdade de Tecnologia Termomecanica, São Paulo, Brazil
Abstract
Turbine and bushing bearing are the most critical components of high-speed machines. This article describes the design of a high-speed turbine supported by hydrodynamic bearings. The mathematical dimensioning and the FEM analysis are presented to validate the mechanical strength of the turbine and the bushing bearing models. Fatigue life and factor of safety were also determined. The simulations showed that the maximum Von Mises stress values obtained are associated to the centrifugal force generated by the system rotational movement. The results variation was mainly due to the properties of the materials proposed. For the turbine, 7075-T6 aluminum alloy and SAE 4340 steel obtained satisfactory behavior under a constant operating speed of 30,000 RPM. For the hydrodynamic bearing, the TM23 bronze alloy exhibited excellent results, without fracture, and low mechanical deformation. The models exhibited a great potential employment in several applications, such as biogas systems to generate electrical energy, and educational test bench for thermodynamic and tribological simulations.
Subject
Mechanical Engineering,Mechanics of Materials