A Machining Program Employing a Slip Line Field Modelling Technique Over Other Constitutive Models

Author:

Kalita Hridayjit1,Kumar Kaushik1

Affiliation:

1. Birla Institute of Technology, Ranchi, India

Abstract

Machining involves complex plastic material flow at the chip separation site which makes it difficult to predict forces and other machining outputs to higher accuracy. Modelling is a common technique which facilitates incorporation of analytical and experimentally derived equations to visualize the process and analyses the mechanism. It saves time and machining factors can be optimized without any trial and error method. In this paper, the significance of slip line field model over other constitutive laws in defining the complex regions in machining are thoroughly reviewed and a slip line field model is chosen which incorporates build up edge (BUE) of a larger size than the other previously defined slip line models for machining. The modified model also incorporate a region of shear zone instead of a shear line, takes into account the chip curl effect and conform to the velocity discontinuity and stress equilibrium. The slip line fields are generated using MATLAB and employing Dewhurst-Collin's matrix technique.

Publisher

IGI Global

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3