CMAC Based Hybrid Control System for Solving Electrohydraulic System Nonlinearities

Author:

Shafik Amro1,Abdelhameed Magdy2,Kassem Ahmed1

Affiliation:

1. Banha Faculty of Engineering, Banha University, Banha, Egypt

2. Ain Shams University, Cairo, Egypt

Abstract

Automation based electrohydraulic servo systems have a wide range of applications in nowadays industry. However, they still suffer from several nonlinearities like deadband in electrohydraulic valves, hysteresis, stick-slip friction in valves and cylinders. In addition, all hydraulic system parameters have uncertainties in their values due to the change of temperature while working. This paper addresses these problems by designing a suitable intelligent control system that has the ability to deal with the system nonlinearities and parameters uncertainties using a fast and online learning algorithm. A novel hybrid control system based on Cerebellar Model Articulation Controller (CMAC) neural network is presented. The proposed controller is composed of two parallel controllers. The first is a conventional Proportional-Velocity (PV) servo type controller which is used to decrease the large initial error of the closed-loop system. The second is a CMAC neural network which is used as an intelligent controller to overcome nonlinear characteristics of the electrohydraulic system. A fourth order model for the electrohydraulic system is introduced. PV controller parameters are tuned to get optimal values. Simulation and experimental results show a good tracking performance obtained using the proposed controller. The controller shows its robustness in two working environments. The first is by adding different inertia loads and the second is working with noisy level input signals.

Publisher

IGI Global

Subject

Mechanical Engineering,Mechanics of Materials

Reference40 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3