Modeling the Complexity of the Terrorism/Counter-Terrorism Struggle

Author:

Arney Chris1,Silvis Zachary2,Thielen Matthew2,Yao Jeff2

Affiliation:

1. Department of Mathematics,United States Military Academy, West Point, NY, USA

2. United States Military Academy, West Point, NY, USA

Abstract

The United States armed forces could be considered the world’s most powerful military force. However, in modern conflicts, techniques of asymmetric warfare (terrorism) wreak havoc on the inflexible, regardless of technological or numerical advantage. In order to be more effective, the US military must improve its counter-terrorism (CT) capabilities and flexibility. In this light, the authors model the terrorism-counter-terrorism (T-CT) struggle with a detailed and complex mathematical model and analyze the model’s components of leadership, promotion, recruitment, resources, operational techniques, cooperation, logistics, security, intelligence, science, and psychology in the T-CT struggle, with the goal of informing today’s decision makers of the options available in counter-terrorism strategy.

Publisher

IGI Global

Subject

Information Systems and Management,Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Information Systems,Management Information Systems

Reference22 articles.

1. Allanach, J., Tu, H., Singh, S., Willett, P., & Pattipati, K. (2004). Detecting, tracking, and counteracting terrorist networks via hidden Markov models. In IEEE Aerospace Conference Proceedings, 5(1), 313-319.

2. Winning hearts and minds at home.;M.Cancian;US Naval Institute,2010

3. Counterinsurgency 3.0.;P. C.Choharis;Parameters,2010

4. Couch, J. C. (2010). Terrorism or insurgency: America’s flawed approach to the global war on terror. smallwarsjournal.com, August 3. Retrieved 20 September 2011 from http://smallwarsjournal.com/blog/journal/docs-temp/486-couch.pdf

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Random Node Pair Sampling-Based Estimation of Average Path Lengths in Networks;International Journal of Operations Research and Information Systems;2018-07

2. Random Node Pair Sampling-Based Estimation of Average Path Lengths in Networks;SSRN Electronic Journal;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3