A Novel Machine Learning-Based Approach for Outlier Detection in Smart Healthcare Sensor Clouds

Author:

Dwivedi Rajendra Kumar1ORCID,Kumar Rakesh1,Buyya Rajkumar2

Affiliation:

1. Madan Mohan Malaviya University of Technology, Gorakhpur, India

2. The University of Melbourne, Australia

Abstract

A smart healthcare sensor cloud is an amalgamation of the body sensor networks and the cloud that facilitates the early diagnosis of diseases and the real-time monitoring of patients. Sensitive data of the patients which are stored in the cloud must be free from outliers that may be caused by malfunctioned hardware or the intruders. This paper presents a machine learning-based scheme for outlier detection in smart healthcare sensor clouds. The proposed scheme is a hybrid of clustering and classification techniques in which a two-level framework is devised to identify the outliers precisely. At the first level, a density-based scheme is used for clustering while at the second level, a Gaussian distribution-based approach is used for classification. This scheme is implemented in Python and compared with a clustering-based approach (Mean Shift) and a classification-based approach (Support Vector Machine) on two different standard datasets. The proposed scheme is evaluated on various performance metrics. Results demonstrate the superiority of the proposed scheme over the existing ones.

Publisher

IGI Global

Subject

Information Systems and Management,Information Systems,Medicine (miscellaneous)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3